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Abstract. We apply an analytic description to the inclusive decay of the τ lepton. We argue that this
method gives not only a self-consistent description of the process both in the timelike region by using
the initial expression for Rτ and in the spacelike domain by using the analytic properties of the hadronic
correlator, but also leads to the fact that theoretical uncertainties associated with unknown higher-loop
contributions and renormalization scheme dependence can be reduced dramatically.

1 Introduction

The ratio of hadronic to leptonic widths for the inclusive
decay of the τ -lepton,Rτ = Γ (τ− → hadrons ντ )/Γ (τ− →
 ν̄� ντ ), gives important information about the QCD run-
ning coupling at relatively small energy scales. The the-
oretical analysis of the hadronic decay of a heavy lepton
was performed in [1] before the experimental discovery of
the τ -lepton in 1975. Since then, the properties of the τ
have been studied very intensively. Numerous publications
are devoted to the QCD description of the inclusive decay
of the τ -lepton and determination of the QCD running
coupling αs at the τ mass scale. A detailed consideration
of this subject has been given in [2]. Recently, an updated
QCD analysis has been performed by the ALEPH [3] and
OPAL [4] collaborations, where applications of different
theoretical approaches to the τ -decay have been analyzed.

At present, the Rτ -ratio is known experimentally to
high accuracy, ∼ 0.5%. Nevertheless, the value of αs ex-
tracted from the data has a rather large error, in which
theoretical uncertainties are dominant. For example, the
ALEPH Collaboration result is αs(Mτ = 1.777 GeV) =
0.334 ± 0.007expt ± 0.021theor [3]. It should be emphasized
that nonperturbative terms, the values of which are not
well known, do not dominate these uncertainties, because
their contribution is rather small [2–4]. The main difficulty
is associated with the perturbative description.

The original theoretical expression for the width
Γ (τ− → hadrons ντ ) involves integration over small val-
ues of timelike momentum [1]. The perturbative descrip-
tion with the standard running coupling, which has un-
physical singularities, becomes ill-defined in this region
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and some additional ansatz has to be applied to get a fi-
nite result for the hadronic width. To this end, one usually
transforms to a contour representation for Rτ [5], which
allows one to give meaning to the initial expression and, in
principle, perform calculations in the framework of pertur-
bative QCD. Assuming the validity of this transformation
it is possible to present results in the form of a truncated
power series with αs(Mτ ) as the expansion parameter [6,
2]. There are also other approaches to evaluating the con-
tour integral. The Le Diberder and Pich prescription [7]
allows one to improve the convergence properties of the
approximate series and reduce the renormalization scheme
(RS) dependence of theoretical predictions. The possibil-
ity of using different approaches in the perturbative de-
scription of τ -decay leads to an uncertainty in the value of
αs(Mτ ) extracted from the same experimental data. More-
over, any perturbative description is based on this contour
representation, i.e., on the possibility of converting the
initial expression involving integration over timelike mo-
menta into a contour integral in the complex momentum
plane. To carry out this transition by using Cauchy’s the-
orem requires certain analytic properties of the hadronic
correlator or of the corresponding Adler function. How-
ever, the required analytic properties are not automati-
cally maintained in perturbative QCD resummed by the
renormalization group. It is well known that at the one-
loop level the so-called ghost pole occurs in the invariant
charge. Higher-loop corrections do not solve this problem,
but merely add some unphysical branch points. The occur-
rence of incorrect analytic properties in the conventional
perturbative approximation makes it impossible to exploit
Cauchy’s theorem in this manner and therefore prevents
rewriting the initial expression for Rτ in the form of a
contour integral in the complex momentum-plane.
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In this paper we will use the analytic approach pro-
posed in [8] (see also [9] for details). Being inspired by
Källén–Lehmann analyticity, which is based on general
principles of quantum field theory, this method ensures
that the running coupling possesses the correct analytic
properties, leads to a self-consistent definition of the ef-
fective charge in the timelike region [10,11] (which cannot
be a symmetrical reflection of the spacelike one [12]), and
provides equality between the initial Rτ -expression and
the corresponding contour representation [13]. A distin-
guishing feature of the analytic approach is the existence
of a universal infrared limiting value of the analytic run-
ning coupling at q2 = 0 which is independent of both the
QCD scale parameter Λ and the choice of renormaliza-
tion scheme. This limiting value is defined by the general
structure of the Lagrangian and turns out to be stable
with respect to higher-loop corrections in contrast to the
corresponding quantity in conventional perturbation the-
ory (PT). The higher-loop stability of the analytic pertur-
bation theory (APT) holds also for physical observables
[13–16].

However, it is not sufficient to study the stability with
respect to higher-loop corrections; one must also investi-
gate the stability with respect to choice of renormaliza-
tion scheme. This is also essential in order to estimate the
uncertainty of the results obtained. The theoretical ambi-
guity which is connected with higher-loop corrections and
with RS dependence becomes considerable at low energy
scales (see, e.g., [17]). The APT method, as an invariant
analytical version of perturbative QCD [18], improves the
situation and gives very stable results over a wide range of
renormalization schemes. This has been demonstrated for
the e+e− annihilation ratio [14] and for the Bjorken [15]
and Gross–Llewellyn Smith [16] deep inelastic scattering
sum rules.

The main aim of the paper is a study of the RS de-
pendence which appears in the description of the inclusive
τ decay within the APT approach. We will consider the
Rτ -ratio at the next-to-next-to-leading order (NNLO) and
the next-to-leading order (NLO) and compare results ob-
tained with those of standard perturbation theory.

2 QCD parametrization of Rτ

The ratio of hadronic to leptonic τ -decay widths can be
written as

Rτ = 3SEW(|Vud|2 + |Vus|2)(1 + δQCD), (1)

where SEW = 1.0194 ± 0.0040 [19] is the electroweak fac-
tor, |Vud| = 0.9752 ± 0.0007 and |Vus| = 0.2218 ± 0.0016
[20] are the CKM matrix elements, and δQCD is the QCD
correction (see [2] for details).

We first introduce some definitions: Im Π ∼ 1 + r
for the hadronic correlator Π(q2) and D ∼ 1 + d for the
Adler function D(q2). Then for massless quarks one can
write δQCD as an integral over timelike momentum s:

δQCD = 2
∫ M2

τ

0

ds

M2
τ

(
1 − s

M2
τ

)2(
1 + 2

s

M2
τ

)
r(s). (2)

Within the conventional perturbative approximation of
r(s) this integral is ill-defined due to unphysical singu-
larities of the running coupling lying in the range of in-
tegration. The most useful trick to rescue the situation
is to appeal to analytic properties of the hadronic corre-
lator Π(q2). This opens up the possibility of exploiting
Cauchy’s theorem by rewriting the integral in the form of
a contour integral in the complex q2-plane with the con-
tour being a circle of radius M2

τ :

δQCD =
1

2πi

∮
|z|=M2

τ

dz

z

(
1 − z

M2
τ

)3(
1 +

z

M2
τ

)
d(z).

(3)
Starting from the contour representation (3) the PT

description can be developed in the following two ways
(see, e.g., [21]). One is Braaten’s approach [6] in which
the quantity (3) is represented in the form of truncated
power series with the expansion parameter αs(M2

τ ). The
NNLO representation for δQCD is written as follows

δBrQCD = aτ + r1 a
2
τ + r2 a

3
τ , (4)

where aτ ≡ αs(M2
τ )/π. The coefficients r1 and r2 in the

MS scheme with three active flavors are r1 = 5.2023 and
r2 = 26.366 [2,22]. The running coupling satisfies the
renormalization group equation:

µ2
da

dµ2
= − b

2
a2(1 + c1a+ c2a

2) , (5)

where b, c1 and c2 are the β-function coefficients. For three
active flavors b = 9/2, c1 = 16/9 and cMS2 = 3863/864.

In the approach of Le Diberder and Pich (LP) [7], the
PT expansion is applied to the d-function1

d(q2) = a(q2) + d1a
2(q2) + d2a

3(q2) , (6)

where in the MS-scheme dMS1 = 1.6398 and dMS2 = 6.3710
[22] for three active quarks. Substituting (6) into (3) leads
to the following expansion, which is not a power series in
a,

δLPQCD = A(1)(a) + d1A
(2)(a) + d2A

(3)(a) (7)

with

A(n)(a) =
1

2πi

∮
|z|=M2

τ

dz

z

(
1 − z

M2
τ

)3(
1 +

z

M2
τ

)
an(z) .

(8)
As noted above, transition to the contour representa-

tion (3) requires certain analytic properties of the corre-
lator, namely, that it must be an analytic function in the
complex q2-plane with a cut along the positive real axis.
The correlator parametrized by the PT running coupling
does not have this virtue [23,13]. Moreover, the conven-
tional renormalization group method determines the run-
ning coupling in the spacelike region, whereas the initial

1 We use the definition q2 < 0 in the Euclidean region. We
have made a few changes in notation from that given in [13]:
now a = αs/π, and consequently d1 and d2 are what we called
d2 and d3 previously.
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expression (2) for Rτ contains an integration over time-
like momentum. Thus, we are in need of some method of
continuing the running coupling from the spacelike to the
timelike region that takes into account the proper ana-
lytic properties of the running coupling [11]. Because of
this failure of analyticity, (2) and (3) are not equivalent in
the framework of PT [13] and if one remains within PT,
nothing can be said about the errors introduced by this
transition.

The analytic approach may eliminate these problems.
To make our analysis more transparent and to demon-
strate clearly the differences between the consequences of
the PT and APT methods, we restrict our consideration
here to massless NNLO. The NNLO analysis can be per-
formed in a more rigorous way without model assump-
tions that allows us to avoid minor details and exhibit
the principal features of the APT approach. Thus, other
effects, such as nonperturbative terms, higher-loop cor-
rections, and renormalon contributions lie outside of the
purpose of this paper. Note, however, that the NNLO ap-
proximation is adequate to describe the actual physical sit-
uation because numerically the corresponding terms give
the principal contribution to the Rτ -ratio.

The function d(q2), which is analytic in the cut q2-
plane, can be expressed in terms of the effective spectral
function ρ(σ), the basic quantity in the APT method,

d(q2) =
1
π

∫ ∞

0

dσ

σ − q2
ρ(σ) . (9)

The connection between the QCD corrections to the D-
and R-functions can be written down in the form of the
dispersion integral

d(q2) = −q2
∫ ∞

0

ds

(s− q2)2
r(s) , (10)

which is inverted by the following formula [24]

r(s) = − 1
2πi

∫ s+iε

s−iε

dz

z
d(z) . (11)

Here, the contour lies in the region of analyticity of the
D-function. In terms of ρ(σ) the function r(s) defined for
timelike momenta can be expressed as follows [10]:

r(s) =
1
π

∫ ∞

s

dσ

σ
ρ(σ) . (12)

(9) and (12) determine the QCD corrections d(q2), which
is defined in the Euclidean (spacelike) region of momenta,
and r(s) defined for the Minkowskian (timelike) argument,
in terms of the spectral function ρ(σ). For δQCD, using (2)
or equivalently (3), in terms of ρ(σ), we find2

δan =
1
π

∫ ∞

0

dσ

σ
ρ(σ) − 1

π

∫ M2
τ

0

dσ

σ

×
(

1 − σ

M2
τ

)3(
1 +

σ

M2
τ

)
ρ(σ) . (13)

2 To distinguish APT and PT cases, we will use subscripts
“an” and “pt”.

Table 1. Successive loop contributions to the PT and APT
expansions for Rτ/[3SEW(|Vud|2 + |Vus|2)]

Method of description Expansion terms

PT (Br)[6] 1 + δBr
pt = 1 + 0.104 + 0.056 + 0.030

PT (LP)[7] 1 + δLP
pt = 1 + 0.148 + 0.030 + 0.012

APT [8] 1 + δan = 1 + 0.167 + 0.021 + 0.002

In the APT approach, the spectral function is defined
as the imaginary part of the perturbative approximation
to dpt(q2) on the physical cut:

ρ(σ) = $0(σ) + d1$1(σ) + d2$2(σ), (14)

where
$n(σ) = Im[an+1(σ + iε)] . (15)

Substituting (14) into (13), we can rewrite δan in the form
of the APT expansion

δan = δ(0) + d1 δ
(1) + d2 δ

(2) . (16)

Note that the APT representations of the d-function and
the QCD correction δQCD are not in the form of power
series.

The function $0(σ) in (14) defines the analytic space-
like running coupling

aan(q2) =
1
π

∫ ∞

0

dσ

σ − q2
$0(σ). (17)

In the one-loop approximation it leads to [8]

aan(q2) = apt(q2) +
2
b

Λ2

Λ2 + q2
. (18)

Unlike the one-loop PT running coupling, apt(q2) = 2/b
× ln (−q2/Λ2) , the analytic running coupling (18) has no
unphysical ghost pole and, therefore, possesses the correct
analytic properties, arising from Källén-Lehmann analyt-
icity that reflects the general principles of the theory. The
nonperturbative (non-logarithmic) term, which appears in
the analytic running coupling, does not change the ultra-
violet limit of the theory and thus the APT and the PT
approaches coincide with each other in the asymptotic re-
gion of high energies.

Thus, the APT approach provides a self-consistent de-
scription of the hadronic τ decay. This description can
be equivalently phrased either on the basis of the original
expression (2), which involves the Minkowskian quantity
r(s), or on the contour representation (3), which involves
the Euclidean quantity d(q2).

An important feature of the APT approach is the fact
that dan(q2) and aan(q2) have a universal limit at the point
q2 = 0. This limiting value, generally, is independent of
both the scale parameter Λ and the order of the loop ex-
pansion being considered. Because dan(0) and aan(0) are
equal to the reciprocal of the first coefficient of the QCD



498 K.A. Milton et al.: Renormalization scheme and higher loop stability

Table 2. QCD parameters extracted from Rτ = 3.642 ±
0.019 [25] in the MS scheme

Approximation Method ΛMS (MeV) α(M2
τ )

NNLO PT (Br) 366 ± 14 0.328 ± 0.007
PT (LP) 391 ± 16 0.340 ± 0.008
APT 907 ± 94 0.403 ± 0.015

NLO PT (Br) 492 ± 17 0.371 ± 0.009
PT (LP) 465 ± 19 0.358 ± 0.009
APT 954 ± 90 0.404 ± 0.014

β-function, they are also RS invariant (we consider only
gauge- and mass-independent RSs). The existence of this
fixed point plays a decisive role in the improved conver-
gence properties relative to PT and in the very weak RS
dependence of our results.

To find the analytic function d(q2) involved in (3), we
solve the transcendental equation for the running coupling

b

2
ln

(
−q2
Λ2
MS

)
−iπ

b

2
= dMS1 −d1+

1
a

+c1 ln
(

b

2c1

)
+F (l)(a),

(19)
where at the NLO

F (2)(a) = c1 ln
(

c1a

1 + c1a

)
, (20)

and at the NNLO

F (3)(a) = F (2)(a) + c2

∫ a

0

dx

(1 + c1x)(1 + c1x+ c2x2)
,

(21)
on the physical cut lying along the positive real axis in
the complex q2-plane and then use (14), (15) and (9). (19)
holds in any MS-like renormalization scheme and allows
us to normalize the results obtained by using the scale
parameter ΛMS. Having found ΛMS, we can study how
δan varies with a change of renormalization scheme. To
do that one has to select parameters which determine the
RS. The function d(q2) in (3) is parametrized by a set of
RS-dependent parameters. There are RS invariant com-
binations which constrain these parameters [27]. At the
NNLO there are two RS-invariant quantities; the first of
them expresses an energy dependence, the second is just
a number

ω2 = c2 + d2 − c1d1 − d1
2 , (22)

which in our case equals 5.2378. Here, c1 is RS invariant
and we can choose d1 and c2 as independent variables,
which define some RS.

There are no fundamental principles upon which one
can choose one or another preferable RS. Nevertheless,
a natural way of studying the RS dependence is to sup-
plement results in a certain scheme with an estimate of
the variability of the predictions over a range of a priori
acceptable schemes specified by some criterion. In [28] it

Table 3. NLO and NNLO predictions for δan in the MS scheme

M2
τ /Λ2 δNLO

an δNNLO
an M2

τ /Λ2 δNLO
an δNNLO

an

2.0 0.2090 0.2106 4.5 0.1820 0.1857
2.5 0.2016 0.2039 5.0 0.1785 0.1824
3.0 0.1955 0.1983 5.5 0.1753 0.1795
3.5 0.1904 0.1935 6.0 0.1724 0.1767
4.0 0.1859 0.1894 6.5 0.1698 0.1743

was proposed to consider the class of ‘natural’ RSs, which
obey the condition

|c2| + |d2| + c1|d1| + d1
2 ≤ C|ω2| . (23)

This inequality is called the “cancellation index criterion”
which means that the degree of cancellation in the sec-
ond RS invariant (22) should not be too large. To define
a boundary of ‘acceptable’ schemes which is defined by
the value of the cancellation index C, we will require no
more cancellation than that which occurs in the scheme
obeying the principle of minimal sensitivity (PMS) [29],
which leads to C 	 2.

3 APT: convergence properties
and RS dependence

For various physical quantities, the APT approach allows
one to construct a series that has improved convergence
properties as compared to a perturbative expansion. To
demonstrate this fact for the hadronic τ -decay, we com-
pare the convergence properties of the PT expansions (4)
and (7) on the one hand, and the APT approach given by
(16) on the other hand. For our calculation we take as in-
put the TAU’98 conference value: Rτ = 3.642±0.019 [25],
which is consistent with the PDG’98 fit Rτ = 3.642±0.024
[20]. In Table 1 we present NNLO results obtained by
the methods mentioned above for the central experimen-
tal value in the MS scheme. The relative contributions of
higher-order terms depends on the method which is ap-
plied. The convergence properties of the APT expansion
seem to be much improved compared to those of the PT
expansions.

The values of the scale parameter ΛMS and the cou-
pling αs(M2

τ ) obtained from above PT and APT expan-
sions are noticeably different from each other. The corre-
sponding numerical estimations are given in Table 2, in
which, in order to clarify the situation concerning higher-
loop stability of different expansions, we also present the
NLO result. This table demonstrates that the theoretical
ambiguity, which is associated with different versions of
the perturbative description, leads to a rather large un-
certainty, αNNLOPT (Br) − αNNLOPT (LP) = 0.012. At the same time
the experimental error is ∆αexpt = 0.007–0.009 [3,4]. The
distinction between NLO and NLLO running coupling val-
ues is 12% for PT (Br) and 5% for PT (LP) approaches,
while for the APT approach it is less than 0.5%.



K.A. Milton et al.: Renormalization scheme and higher loop stability 499

The non-logarithmic terms, which ensure the correct
analytic properties and allow a self-consistent description
of τ decay, turn out to be very important for the numeri-
cal analysis and influence in an essential way the value of
the Λ parameter extracted from the data. Indeed, at the
one-loop level one can write a simple relation: δan(Λ) 	
δLPpt (Λ) − (2/b)Λ2/M2

τ . The second term, which is ‘invisi-
ble’ in the perturbative expansion, turns out to be numer-
ically important [26] (see the detailed discussion in [11]).
Note also that there is a difference between the shapes of
the analytic and perturbative running couplings, for ex-
ample, αan(Λ = 907 MeV) = 0.403, while at the same
scale, the value of the perturbative coupling much larger,
αpt(Λ = 907 MeV) = 0.796. Here the question may arise,
how is the large APT value of Λ consistent with high en-
ergy experimental data? We have estimated the ratio of
hadronic to leptonic Z-decay widths, RZ, using the above
value of Λan and the matching procedure proposed in [11].
We obtained the value RZ = 20.82, which lies within the
range of experimental errors; for example, the PDG’98
average is RZ = 20.77 ± 0.07 [20]. This fact can be under-
stood if one takes into account that there are differences
between the shapes of the analytic and perturbative run-
ning couplings and also in the terms of the corresponding
series.

We found that the value of δan depends so slightly
on ΛMS that a 0.9% error in Rτ gives 18% error in the
value of ΛMS. (This is the reason why the errors in the
values of ΛMS and α(M2

τ ) given by APT are larger than
those in PT.) We illustrate this feature in Table 3. Ac-
cording to the table, when we change M2

τ /Λ
2 from 2.0 to

6.5 (corresponding to a variation of Λ from 1.256 GeV to
0.697 GeV), δan is only altered by about 20%. The sensi-
tivity to ΛMS increases as M2

τ /Λ
2 gets smaller.

Consider now the RS dependence of the APT result
and compare it with the perturbative LP approach,3 which
of the two PT schemes is more preferable from the view-
point of sensitivity to RS dependence. In the framework
of the PT, the RS dependence of δQCD has been discussed
in detail in [29].

In the MS scheme we adopt δan,pt = 0.1906 and con-
sider some RS belonging to the domain described above
[see (23)]. Take two schemes, A and B, located at the
two lower corners of the boundary of the domain (see
Fig. 1), i.e., they have the same cancellation index as
does the PMS scheme, with A = (−1.6183, 0) and B =
(0.9575, 0), where the first coordinate is d1 and the sec-
ond is c2. Then for the PT case in NNLO we get δpt(A) =
0.2025 and δpt(B) = 0.1911. Therefore, even for this suffi-
ciently narrow class of RS the perturbative approach gave
a 6% deviation in δQCD that corresponds to a RS uncer-
tainty for the running coupling value in the MS-scheme
of ∆αRSpt = 0.0153. The difference between APT results
is much smaller: δan(A) = 0.1890 and δan(B) = 0.1905,
and we have only 0.8% deviation, which corresponds in
the MS-scheme to a RS uncertainty of ∆αRSan = 0.0035.

3 The LP approach is often called the contour-improved
fixed-order PT (CIPT) [25].
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Fig. 1. Contour plot of values of δan at the three-loop order
as a function of RS parameters d1 and c2. The dashed line
indicates the boundary of the domain, defined by (23) with
C = 2, the heavy points are the positions of the A, B and MS
schemes

The similar RS stability holds also at the two-loop level:
one has a 5% deviation in the PT case and only a 0.4%
for the APT. We display our NNLO results in the form of
a contour plot, in Fig. 1.

It is worthwhile to analyze some schemes lying out-
side the domain considered above with the relatively small
value of the cancellation index C 	 2. Among them there
is, for instance, the commonly used MS scheme which does
not belong this domain. In [29] it was shown that the so-
called V scheme [30] lies very far from the domain de-
scribed above and gives so a large value of δpt that it
cannot be used at this low energy. For the V scheme we
have d1 = −0.109 and c2 = 26.200. The three-loop pertur-
bative result is δpt(V ) = 0.3060 that corresponds to about
a 61% deviation from the MS scheme. On the other hand,
if we turn to APT we have δan = 0.1902, i.e., only about
a 0.2% deviation from the MS scheme. So the V scheme
is still useful at this energy in APT.

In PT at high energies the weak RS dependence is a
consequence of the small value of the coupling constant.
At lower energies the uncertainty increases. In APT, at
high energies, the situation is the same. However, at low
energies the theory has a universal RS-invariant infrared
limiting value dan(0), which restricts the RS ambiguity
over a very wide range of momentum. Another way to
illustrate the remarkable stability of APT is to calculate
the spectral functions $n(σ) given by (15); one sees that
$1(σ) is much smaller than $0(σ) over the whole spectral
region. The same statement is true for the relationship
between $1(σ) and $2(σ). This monotonically decreasing
behavior reduces the RS dependence strongly, since the
perturbative coefficients d1 and d2 in expression (14) for
ρ(σ) are multiplied by these functions. For the MS scheme,
this situation is demonstrated in Fig. 2.
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Fig. 2. The spectral densities �0, �1 · 10 and �1 · 102 vs. L =
ln(σ/Λ2) in the MS scheme

4 Conclusion

We have considered inclusive τ -decay in three-loop order
within analytic perturbation theory concentrating on the
analysis of theoretical uncertainties coming from the per-
turbative short distance part of the QCD correction to
the Rτ -ratio, which defines the principal contribution to
this physical quantity. For the low energy τ -mass scale,
the main source of theoretical uncertainties results from
the inevitable truncation of the perturbative series, which
leads to the essential RS dependence and higher loop sensi-
tivity of the theoretical predictions. In order to resolve this
problem within the conventional perturbative approach it
is possible to try, in principle, to compute higher loop con-
tributions. However, even if this were to be done, one has
to keep in mind that from the rigorous point of view it will
hardly be sufficient because the series is asymptotic, and,
in any finite order, the analytic properties of the hadronic
correlator, which arise from general principles of the the-
ory, are violated. Thus, to resolve this problem one has to
use a modification of the perturbative expansion at low
energy scales.

Here, we have applied the analytic approach which is
not inconsistent with the general principles of quantum
field theory and which opens up the possibility of reduc-
ing the theoretical uncertainties associated with short dis-
tance contributions mentioned above. Let us summarize
the important features of this method: (i) the method
maintains the correct analytic properties and leads to a
self-consistent definition of the procedure of analytic con-
tinuation from the spacelike to the timelike region; (ii) the
APT approach has much improved convergence properties
and turns out to be stable with respect to higher-loop cor-
rections; (iii) the RS dependence of the results obtained
is reduced drastically. For example, the V scheme, which
gives a very large discrepancy in standard perturbation
theory, can be used in analytic perturbation theory with-
out any difficulty and the APT predictions are practically
RS independent over a wide region of RS parameters.

The nonperturbative power corrections coming from
the operator product expansion (in this connection see a
discussion in [31,32]), renormalon and other effects are
beyond the scope of our present consideration. Note, how-
ever, that the process of enforcing analyticity modifies the
perturbative contributions by incorporating some nonper-
turbative terms. The form of the APT running coupling
and the non-power structure of the APT expansion are
essentially different from the PT ones. Numerically, this
difference becomes very important in the region less than
a few GeV and in order to get the same physical quan-
tity the contribution of power corrections should also be
changed.

The value of ΛAPT is very sensitive to the experimen-
tal value of Rτ . For example, as has been demonstrated in
[13] the use of the value of Rτ obtained by the CLEO
collaboration [33] gives a value of the scale parameter
some 30% smaller than that found here. Note also that
the renormalon contribution influences the value of Λ ex-
tracted from the τ data (see [34] for a review). Within the
usual approach, renormalons reduce the value of αs(M2

τ )
by about 15%. A similar situation holds also in APT and
for the nonperturbative a-expansion approach [35], which
allows one, as in APT, to maintain the required analyticity
[23]. These two analytic approaches often lead to rather
similar consequences. For example, they allow one to get
a good description of experimental data corresponding to
the Euclidean and Minkowskian characteristics of the pro-
cess of e+e− annihilation into hadrons down to the lowest
energy scale [14,36].

Pure massless APT analysis, which has been performed
here, leads to an unusually large value of the QCD scale
parameter Λ as compared to the conventional PT value.
This is connected with the presence of nonperturbative
contributions that appear in the APT method which have
a negative relative sign. The effects mentioned above can
change the value of the scale parameter extracted from
the τ data. However, this fact is not relevant for the es-
sential conclusion which we have claimed in this paper,
that the APT method provides predictions which are sta-
ble with respect to the choice of renormalization scheme
and to the inclusion of higher loop corrections. Thus, the
analytic approach discussed here is not in conflict with the
general principles of the theory and allows one to reduce
the uncertainties of theoretical predictions drastically.
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